Nonparametric Inferences on Conditional Quantile Processes
نویسندگان
چکیده
منابع مشابه
A Smooth Nonparametric Conditional Quantile Frontier Estimator
Traditional estimators for nonparametric frontier models (DEA, FDH) are very sensitive to extreme values/outliers. Recently, Aragon, Daouia, and Thomas-Agnan (2005) proposed a nonparametric α-frontier model and estimator based on a suitably defined conditional quantile which is more robust to extreme values/outliers. Their estimator is based on a nonsmooth empirical conditional distribution. In...
متن کاملNonparametric multivariate conditional distribution and quantile regression
In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...
متن کاملFractional order statistic approximation for nonparametric conditional quantile inference
Using and extending fractional order statistic theory, we characterize the O(n−1) coverage probability error of the previously proposed confidence intervals for population quantiles using L-statistics as endpoints in Hutson (1999). We derive an analytic expression for the n−1 term, which may be used to calibrate the nominal coverage level to get O(n−3/2 log(n)) coverage error. Asymptotic power ...
متن کاملOptimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions
Li & Racine (2008) consider the nonparametric estimation of conditional cumulative distribution functions (CDF) in the presence of discrete and continuous covariates along with the associated conditional quantile function. However, they did not propose an optimal data-driven method of bandwidth selection and left this important problem as an ‘open question’. In this paper we propose an automati...
متن کاملConditional Quantile Processes Based on Series or Many Regressors
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR series framework, covering many regressors as a special case, for performing inference on the entire conditional quantile function and its linear functionals. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2007
ISSN: 1556-5068
DOI: 10.2139/ssrn.884328